

University of Stuttgart

Institute of Machine Components Reliability Department

Taking Advantage of Smart Data in Reliability Assurance and Product Design 01 01 0101 1010 100 100 1010 100 1010

Dr.-Ing. Martin Dazer

Institute of Machine Components

Overview

 Research fields: Reliability Engineering, Sealing Technology, Driveline Technology, Rail Vehicle Technology

DYNAS

- Scientific staff: 2 profs, 5 doctors, about 35 PhD students
- App. 100 bachelor and master theses
- App. 50 publications yearly

Institute of Machine Components

SOLUTIONS

3 14.10.2021 | University of Stuttgart | Institute of Machine Components | Reliability Department | Martin Dazer

RelTest-Solutions

RelTest-Solutions

SOLUTIONS

Scope

Introduction & Challenge

SOLUTIONS

Introduction & Challenge

SOLUTIONS

Scope

SOLUTIONS

Main target

SOLUTIONS

Main target

Reliability

- Necessary to ensure safe product operation
- Design has to meet reliability requirements

Related parameters

- Probability of failure
- Useful life
- Availability Maintainability Oversized Design

Sustainability:

- Necessary to reduce global warming potential
- Best Design for low environmental impact

Related parameters

- Material consumption
- Energy demand
- Spare parts requirements
- Useful life

Reliability based gear wheel design Boundary conditions

Identification of the best design!

Requirements

Reliability	99 % with 50 % CL		
Lifetime	1,8 · 10 ⁷ Cycles		
Stress	150 Nm Torque		

Reliability based gear wheel design Results

Life test for reliability demonstration

Life cycle assessment for:

- Planned sales units
- Reliability demonstration effort

Reliability based gear wheel design

Comparison of different results

SOLUTIONS

Reliability based gear wheel design

Oversized designs

SOLUTIONS

Reliability based gear wheel design

Optimal design

SOLUTIONS

JNI STUTTGAR

Reliability based gear wheel design Optimal design

SOLUTIONS

Scope

19 14.10.2021 | University of Stuttgart | Institute of Machine Components | Reliability Department | Martin Dazer

"If I had eight hours to cut down a tree, I'd spend six hours grinding the ax."

Abraham Lincoln

Zero failure / Success Run Testing

SOLUTIONS

Zero failure / Success Run testing Probability of Test Success

$$P_{ts} = R(t_p)^n$$

 $P_{ts} = 0.97^{29} = 0.41 \approx 41 \%$

21 14.10.2021 | University of Stuttgart | Institute of Machine Components | Reliability Department | Martin Dazer

Zero failure / Success Run testing

Optimal test planning

Parameter space

•

٠

SOLUTIONS

Finding an optimal test strategy

Using Smart Data and Deep Learning

ANN prediction quality

Test type	RMSE (<i>P</i> _{ts}) [%]			
EoL	0.68			
EoL combined	0.84			
Accelerated EoL	1.67			
EoL cens. (type I)	2.47			
EoL cens. (type I) combined	2.95			
EoL cens. (type II)	1.49			
EoL SD	1.04			
SR	2.12			

Some Results

SOLUTIONS

JNI STUTTGAR

Example

Giving some real numbers

Requirement:

R(16.000 LC) = 94 %

C = 90 %

 $P_{ts} \ge 90 \%$

Static strength test for reliability proof

Stochastic Life Calculation

Genereting prior information

Stochastic Life Calculation

Results

SOLUTIONS

Example

Giving some real numbers

Requirement:

 $R(16.000 \text{ LC}) = 94 \%; C = 90 \%; P_{ts} \ge 90 \%$

Test strategy	Acc.	Non- censored	Type-I	Type-II	Sudden Death	Success Run <i>f</i> = 0	Success Run <i>f</i> = 1
P _{ts} [%]	90,0	91,4	90,2	83,4	90,1	60,4	81,6
п	27	30	36	18	56	38	33
Cost[€]	291.353	326.800	391.200	190.400	591.600	389.000	338.000
Time [LC]	111.061	165.500	174.000	81.900	550.400	48.800	62.300

Scope

ΠΛ

UNI STUTTGART

SOLUTIONS

Bayes Theorem for HV Battery

SOLUTIONS

32 14.10.2021 | University of Stuttgart | Institute of Machine Components | Reliability Department | Martin Dazer

Bootstrap approach

SOLUTIONS

Calculation approach

SOLUTIONS

Combining the information

Results

ΛΔ

UNI STUTTGART

SOLUTIONS

Scope

SOLUTIONS

UNI STUTTGART

37 14.10.2021 | University of Stuttgart | Institute of Machine Components | Reliability Department | Martin Dazer

Premium for Height problem

SOLUTIONS

JNI STUTTGAR

System layout

SOLUTIONS

Representative load spectra

RELETES

SOLUTIONS

Deflection of the different variants

RELETEST

SOLUTIONS

Availability results from the petri net calculation

SOLUTIONS

Comparison of the different variants

SOLUTIONS

Scope

SOLUTIONS

Summary & Conclusion

Reliability is one of the key factors to develop high quality products

High performance reliability methods using smart data can be used to identify optimal product designs

Bayes Theorem can reduce uncertainty for efficient reliability demonstration

Reliability methods are generally applicable

University of Stuttgart Institute of Machine Components Reliability Department

Thank you!

Dr.-Ing. Martin Dazer

e-mail dazer@ima.uni-stuttgart.de phone +49 (0) 711 685-66164 www.ima.uni-stuttgart.de

Pfaffenwaldring 9 70569 Stuttgart Germany

"Find us on LinkedIn"

