UNIVERSITY OF TWENTE.

Netherlands Defence Academy Ministry of Defence

Predictive Maintenance

Combining Data and Physics

Prof. dr. ir. Tiedo Tinga t.tinga@mindef.nl

Background

• NLDA

- Professor Life Cycle Management
- Predictive Maintenance based on physical models
- Smart Maintenance knowledge center with RNLN
- Focus on military systems (ships, helicopters, vehicles)

University of Twente

- Prof. Dynamics based Maintenance ~ 15 pp
- Predictive Maintenance + Structural Health & Condition Monitoring
- Focus on civil applications (windturbines, bridges, train/track)
- Part of Maintenance Consortium TIME
 - > Collaboration 8 research groups @UT

Outline

- Introduction & motivation
- Predictive Maintenance → what & why ?

Approaches

- Data-driven
- Physics of failure
- Combining data & physics

Challenges & conclusion

Why Predictive Maintenance, and how ? MAINTENANCE BASICS

Costs of Maintenance

Costs of (no) maintenance

 A day of downtime in the process industry costs hundreds of thousands of euros

 An hour of downtime in semiconductor manufacturing costs tens of thousands of euros

Military systems

Challenging Life Cycle Management

- 20-30 yrs in use \rightarrow sustainment costs > initial investment
- Highly technological and complex
- Variable operational conditions
- High requirements for availability
- \rightarrow Requires smart approach to LCM

Maintenance is important *Predictive* maintenance even better !

The maintenance challenge

Preventive maintenance
 → length of service intervals

Balance between

- not too early
 - > high costs
 - > spare parts, repairs, man hours
- not too late
 - > unexpected failures
 - > low reliability / availability

Optimal solution

- on-condition maintenance (just-in-time)
- both *efficient* (costs) and *effective* (no failures)

→ Reliability = proper design + suitable maintenance

14 October 2021

Just-in-time Maintenance

Health & Condition monitoring

- Determine actual condition with sensors / measurements → condition / performance monitoring
- Predictions based on trends / extrapolation
- Reaction time often short \rightarrow P-F interval
- Extrapolation inaccurate at varying usage
- + Present condition always accurately known

Predictive Maintenance & Prognostics

- **Calculation** of (remaining) life time based on model or experience (statistics)
- Measured or assumed usage profile required
- Only certainty at failure, before: actual condition unknown
- +Varying usage can be accounted for
- +Good model enables predictions far into future (planning !)

1. Health / Condition Monitoring

Condition monitoring

- Vibration analysis
- Oil analysis
- Thermography
- Electrical current signature analysis
- \rightarrow Developments:
 - From periodic to in-line / continuous measurements
 - Automation of analysis → AI: pattern recognition, clustering

Structural Health Monitoring

- Vibration analysis on structures
- Interpretation challenging !
- Requires advanced signal processing / data analysis
- \rightarrow Developments:
 - $_{\odot}~$ New sensor types \rightarrow optical fibres
 - $\circ~$ Improved analysis with AI

2. Prognostics

Experience-based (traditional)

- Estimate future usage (OEM) \rightarrow conservative
- Collected data \rightarrow not always available
- Experience from past \rightarrow not always representative

Data-driven

- Derive relations from (big) data sets (e.g. registrations, sensors)
 - \rightarrow sometimes unexpected relations, but is often *black box*
 - \rightarrow not always representative

Model-based

- Model of physical failure mechanism
- Input from monitored usage / loads
 - \rightarrow always representative
 - \rightarrow modeling takes large effort

 V_2

S

DATA-DRIVEN APPROACH

Data-driven diagnostics & prognostics

Lot of potential due to

- Large increase in sensor availability
- Almost no limitation to data storage
- Lots of Artificial Intelligence (AI) algorithms
- \rightarrow Considered by many to solve all maintenance problems soon !

• However: fundamental challenge of applying AI in maintenance

– AI / machine learning algorithms require large numbers of examples for training

 \rightarrow Per definition only limited failure data sets !

Only limited amount of generic solutions for prognostics

Various levels

Detection of failures

- Is something wrong ?
- Anomaly detection, but could be contextual
- Built-in warnings / alarms \rightarrow often with fixed threshold
 - > False alarms, operator faults, ...

Diagnosing systems

- What exactly is wrong ?
- After failure: indicate where to find the problem (fault finding)
- Before failure: what is present condition (~ health check)

Prognostics

- When is the system expected to fail ?
- Holy grail in PdM, but challenging / (still) too ambitous
 - > Limited number of failures / training examples

Potential solutions

Combine data-driven approaches with physics of failure

- Physics of failure based on laws of physics
 - > Many relations already well-known
 - > Can be used as starting point or to strengthen AI algorithms \rightarrow hybrid approaches

Generate additional failure data for training

- Accelerated testing \rightarrow costly, not always representative
- Fleet leader concept
 - > Reason: actual failures invisible due to prev. maintenance (PM)
 - > Generate failure data in controlled way:
 - » Postpone PM for small fraction of systems
 - » These systems must lead the fleet (age)
 - » Consequences of failure must be limited
 - > Benefits
 - \ast Rest of fleet \rightarrow PM closer to actual life time
 - » Additional sensor data collected \rightarrow reveals patterns related to failures

Example: Anomaly detection in diesel engines

• Use engine data to detect bearing failures

Challenges

- Select engine parameters (sensor) that relates to bearing condition
 - > Bearing (oil) temperature
- How to separate bearing degradation from other causes for T increase ?
 - > Contextual anomalies
 - > Also include rpm, sea state, fuel flow, ... ? How to select ?
- How to train model ?
 - > Requires at least some failures

Methods

- Regression models
- Statistical Process Control

Diagnosis of diesel engine

- Detect (upcoming) bearing failures in diesel engines
- Multiple Linear Regression

General flowchart of a model-based approach (Jardine et al., 2006)

$$\begin{split} T_b &= \beta_{1,b} + \beta_{2,b} * x_{RPM} + \beta_{3,b} * x_{RPM}^2 + \beta_{4,b} * x_{Oil} + \beta_{5,b} * x_{RPM_TC} + \beta_{6,b} * x_{RPM_TC}^2, \\ b &\in \{1, \dots, 7\} \end{split}$$

D. Heek, 2021

Holland Innovative Reliability Seminar

14 October 2021

Diagnosis of diesel engine (2)

Initialize period

- Learning MLR
- Setting UCL

Application

 Check whether T stays within control limits

Challenges

- different operating modes

Case I – to defect

Case III – another engine, no defect

D. Heek, 2021

Understanding failures

PHYSICS OF FAILURE

Balance

• Load versus load-carrying capacity

Failure mechanisms

- Static overload
- Deformation
- Fatigue
- Creep
- Wear
- Melting
- Thermal degradation
- Electric failures
- Corrosion
- Radiative failures

• Complete overview:

14 October 2021

Fatigue

- Caused by cyclic load (< tensile strength !)
- Failure after large number of cycles (10⁴ 10⁷)
- Life time related to $\Delta \sigma \rightarrow$ Wöhler curve

Wear

- Parts sliding against other parts
- Archard's law

 $V_i = k_i F s$

- k [mm³/Nm] is specific wear rate (different for two bodies)
- k depends on
 - » material combination
 - » surface roughness
 - » contact temperature
 - » hardness
 - » lubrication

ROLE IN MAINTENANCE

Application in (smart) maintenance

Knowledge on failure (mechanisms) can be used ...

before failures occur

- Identify critical components \rightarrow FMECA \rightarrow Design for Maintenance !
- Predict time to failure \rightarrow determine optimal maintenance intervals: **PdM**
- Develop efficient condition monitoring \rightarrow smart sensoring

• after failure has occurred

- Why did component fail ?
- How can future failures be prevented ?
- Root Cause Analysis

• when a fraction of a (larger) population has failed

- Quantify failure behaviour \rightarrow Reliability Engineering
- Find Relevant Failure Parameter (RFP)

MODEL-BASED PROGNOSTICS

Model-based: relation usage – life time

NH-90 helicopter prognostics

HUMS system available for monitoring

- Usage \rightarrow flight hours, landings, conditions, etc.
- Health \rightarrow mainly vibrations

Heerink, 2013

- Identified critical components (Pareto + CMMS)
 - Cost drivers
 - Availability killers

Determined failure mechanism + governing loads

NH-90 helicopter prognostics (2)

- Landing gear shock absorber is critical
- Time to failure not correlating to FH
- Develop prognostic method

14 October 2021

NH-90 helicopter prognostics (3)

- Mechanism: wear of seal (oil leakage) $V_i = k_i F s$
- Relevant Failure Parameter: travelled distance
 → # landings + weight

Predictive maintenance electronics

- Failures of electronic components often considered to be random
- Service life depends on
 - Vibration level
 - Humidity
 - Temperature (changes)
- Models available in literature

- Developed a tool to predict service life (APAR)
- Performed tests to quantify loads

Politis, Ten Zeldam 2015/2016

Service life PCBs radar systems

 \longrightarrow

Politis, Ten Zeldam 2015/2016

Physical model

Degradation rates

Holland Innovative Reliability Seminar

14 October 2021

ROOT CAUSE ANALYSIS

Root Cause Analysis

- Aims to find root cause of any failure
 - Prevent that only symptoms are tackled
 - Provide real solution to problem

• Challenge: sufficient level of detail (5 Why)

- Should be until level of failure mechanism
- Load $\leftarrow \rightarrow$ Capacity
- Mechanism based
 Failure Analysis (MBFA)

14 October 2021

Hybrid approaches **COMBINE WITH DATA ANALYSIS**

Failure mechanism and data analysis ?

• Any failure mechanism is governed by the load + usage

 Knowledge of failure mechanism provides insight in required data / parameters

→ relevant failure parameter (RFP)

• Advantage

- Variation in RFP gets smaller \rightarrow better prediction of life time
- More accurate reliability assessment

Relevant Failure Parameter - example

- Airliner with fleet of aircraft
- Part fails due to fatigue (~ 10.000 cycles)

• Uncertainty reduced with better RFP

Hybrid prognostic methods

• Use Unscented Kalman Filter to tune physical model

- Physical model for crack propagation
- Measurements (crack length, loads) for tuning

Keizers et al, IJPHM, 2021

CHALLENGES / EXPERIENCE

Challenges in Predictive Maintenance

1. Critical part selection

• Which (sub)system is most suitable for PdM ?

2. Predictive modelling / prognostics approach

• Which approach is most suitable ?

3. Monitoring / data collection

• Which data / parameter to measure / store ?

4. Data analysis

• Which algorithm / how to combine with domain knowledge ?

5. Model validation

What data + history (usage) is needed ?

Conclusion

- Smart Maintenance & Reliability has lot of potential & gets lot of attention
- Ultimate ambition is 100% prediction of failures
- Lots of data and AI allow for interesting analyses, but
- knowledge of Physics of Failure is essential for
 - Designing mantainable systems
 - Developing Predictive Maintenance concepts
 - Learning from failures (RCA)

Further reading

- Check our publications on
 - <u>https://www.utwente.nl/en/et/ms3/research-chairs/dbm/publications/</u>
 - <u>https://research.utwente.nl/en/persons/tiedo-tinga</u>

14 October 2021

